$(i)$ $f (x)$ is continuous and defined for all real numbers
$(ii)$ $f '(-5) = 0 \,; \,f '(2)$ is not defined and $f '(4) = 0$
$(iii)$ $(-5, 12)$ is a point which lies on the graph of $f (x)$
$(iv)$ $f ''(2)$ is undefined, but $f ''(x)$ is negative everywhere else.
$(v)$ the signs of $f '(x)$ is given below
Possible graph of $y = f (x)$ is
In which of the following functions is Rolle's theorem applicable ?
The function $f(x) = x(x + 3){e^{ - (1/2)x}}$ satisfies all the conditions of Rolle's theorem in $ [-3, 0]$. The value of $c$ is
If the functions $f ( x )=\frac{ x ^3}{3}+2 bx +\frac{a x^2}{2}$ and $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ have a common extreme point, then $a+2 b+7$ is equal to
Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-
If $L.M.V.$ theorem is true for $f(x) = x(x-1)(x-2);\, x \in [0,\, 1/2]$ , then $C =$ ?